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RATIONAL MODELING BY PENCIL-OF-FUNCTIONS METHOD

V. K. Jain T. K..Sarkar ' D. D. Weiner #
Senior Member. IEEE Senior Member, IEEE Member, IEEE

ABSTRACT

Pole-zero modeling of signals, such as an electromagnetic-

scatterer response, is considered in this paper. It is shown by use of

pencil-of-functions theorem that (a) the true parameters can be recovered

in the ideal case (where the signal is the impulse response of a rational

function H(z)), and (b) the parameters are optimal in the functional depen-

dence sense when the observed data are corrupted by additive noise or by

systematic error. Although the computations are more involved than In all-

pole modeling, they are considerably less than those required in iterative

schemes of pole-zero modeling. The advantages of the method are demon-

strated by a simulation example and through application to the electro-

magnetic response of a scatterer.

The paper also inclddes very recent and promising results on a new

approach to noise correction. In contradistinction with spectral subtraction

techniques, where only amplitude information is emphasized (and phase is

Ignored), we propose a method that (a) estimates the noise spectral density

for the data frame, and then (b) performs the subtraction of the noise corre-

lation matrix from the Gram matrix, of the signal.

I. INTRODUCTION

Signal representation and approximation [l]-[41 is basic to (a) time-domain

extraction of singularities of a scatterer's field pattern [5],[61,[16] and to (b)

recursive digital-filter synthesis [7], [121. It is also useful in (c) bandwidth

*Dept. of Electrical Eng. University of South Florida, Tampa, FL. 33620
**Dept. of Electrical Eng. Rochester Inst. of Tech. Rochester, N.Y. 14523
#Dept. of Electrical Eng. Syracuse University, Syracuse, N.Y. 13210

This work was supported by the Office of Naval Research under contract No.
N00014-79-C-0598.
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compression of signals [21, and (d) time-domain measurement and testing of

networks/channels. This paper discusses a unified approach to representing

or approximating a given empirical signal x(t) by sum of exponentials, i.e.,

for finding the right hand side of

n sitx(t) a y(t) Z d I-e Y (a) (1a)
i-i

n I
Y(s)- E (lb)

or, equivalently, the right hand side of the sampled version

n k
x(k) " y(k) - I R (z 1 ) 4-' Y(z) (2a)

=I-

n R
Y(z) - E (

i-1 (l-Z Iz)

b o0 + bn-zi + + bn-n+l

+ l + azSl+hz
- + . . . + n

B z (2b)

A(z)

The poles s• (or z1 in z-domain) are either real, br they occur in complex

conjugate pairs.

When equality holds in (2a), the sampled signal x(k) is said to be

rational of order n, and thus rationally representable. Additionally, if

Re sI  0 (or, Izil< 1) it is said to be stable-rational of order n.

In the method described here, the given signal is processed in reverse-

time by a cascade of first order digital filters to yield a family of infor-

mation signals. The Gram matrix F of these information signals is shown to

contain the essential information on the denominator parameters of Y(z).

2
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yY(k) Y(k) YN(k)
-y~k Y2k)

(z) 111 - qz)

Fig. 1. Reverse-time processing by

first-order filters
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Specifically, it is shown that A(z) is determined as

n+l
A(z)- (qz)-n I Z i/Dtl qz-1)n lI/D)

i-1

where Di are the diagonal cofactors of the matrix F. The numerator para-

meters are then determined using a least-squares fit, i.e., b =-P1c,

where P and c are defined In the paper.

The entire procedure is thus noniterative and computationally efficient.

Iterative methods, such as the modified Newton method &2]. require as many

as a hundred iterations, each involving a matrix inversion. Our computations

are roughly equivalent to two matrix inversions. It is a generalization of

the method developed In [8] to reverse-time processing by first order filters.

This formulation results in a lower order matrix (n+l dimensional) than did

the formulation in [8] (2n+l dimensional). Examples presented demonstrate (i)

noiseworthiness in the representation problem when data are corrupted by

noise and (ii) the effectiveness of the method in the approximation problem.

Comparison of the method with the maximum entropy method (or all-pole linear

predictor) and the Prony method [1], [4] is also included in the paper.

II. FIRST-ORDER FILTER BASED INFORMATION SIGNALS

Suppose a suitable K has been selected such that x(k) - 0 for k > K (so

that use of the upper limit K-1 instead of - on summations may be permitted).

We define the reverse-time first-order filtered signals as (see Fig. 1)

x1 (k) - x(k)

x2(k) = qx2 (k+l) + x1(k) (3)

xM(k) - qx,(k+l) + x n(k)



where N - *+I, and x1(K) - 0 for I - 1, 2, ... , N. Further, 0 < q < 1.

1
This family of signals , which ye shall call information signals,

possesses the interesting property stated below.

Leuna I

If x(k) - y(k) Is stable-rational of order n vith poles zi, then the

corresponding information signals are also stable rational of order n vith

the poles zx:

n R _ k

yi+1 (k) - I ( (zL) (4)
1-1 (1-q z,)

Proof: We prove this by induction. For iO the statement is trivially true

since (4) is Identical to (2) for this case. Assuming it to be true for i-i,

let us proceed to prove it is true for 1.

From (3)

yi+1 (k) - qy+l(k+l) + yi(k)

which is readily shown to be equivalent to

yi+l > (k) qv-k YIN)

v-k

R I v-k V
_I E q (z,,

1-1 (l-q zi) v-k

(from induction hypothesis)

n Ri vk k- zk Eq" ()

-l (1-q z,) I v-k

The result of equation (3) follows immediately by observing that

.1 The nomenclature 'information signal' is not to be confused with traditional
information theoretic concepts. It is used here because these signals will
be shown to yield the denominator parameters of Y(z).
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%qVP-k (zL)v-k 1

v-k (1-q zt)

Before leaving this section, we remark that the set yl, "i' n Yn s

linearly independent, vhile the set yl, ... Yn' Yn+l is linearly dependent.

III. DETERMINATION OF PARAMETERS VIA PENCIL-OF-FUNCTIONS

THEOREM FOR RATIONALLY REPRESENTABLE SIGNALS

In this section we will determine the signal parameters for the case

x(k) - y(k), i.e., where the signal is rationally representable. We will

call zI (see (2)) the poles of the impulse response, R., the corresponding

residues, and C - (z k) the associated modes. Note that the poles occur

in conjugate pairs whenever complex, as do the residues, since y is real.

The significance of Lemma 1 of the previous section arises from the

fact that each of the information signals contains the modes (Z - (z 1)k,

I - 1, ..., n. Further, the pencil-of-signals2 y Yi i + Y1 also contains

all these modes unless y equals one of the poles; in the latter case, i.e.,

when T Z, I+, + y, does not contain the mode C m - {(zm)k) " This re-

suits in the following observation

Lemma 2. The set

(qzm - l)y2 + yl, (qzm -l)y3 + y2 v ... (qzu -l)YN + yn (5)

is linearly dependent for m - 1, 2, ..., n where z are the poles of the

right hand side of (2).

Definition. Define the N x N dimensional Gram matrix (recall, N - n+1)[11]

2 The terminology pencil-of-functions is derived from literature in physics

and mathematics; see, for example, Cantmacher [9] where A + XB is called
a pencil of matrices A and B parametrized by sealer A. See also Gueguen[10]
for recent usage.
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Fm <YIYl " " Y' YN>

<yNIyI > . .<yNO, > -

K-1
<y,$yj > Z - y1 (k)yj (k) (6)

k-0

or, equivalently

K-1 T
F - E f(k)f (k) (7)

k-O

where

f(k) a [yl(k) Y 2 (k) ... yN(k)].

We can now apply the pencil-of-functions theorem of reference [8] to

obtain the central theoretical result of this section. A statement of

pencil-of-functions theorem is given in Appendix A.

Theorem 1. The poles of the impulse response y(k) must satisfy the equation

t (V q-) -  8)
i-I

where D are the diagonal cofactors of the Gram matrix F (defined in (7)).
i

Proof: The theorem follows immediately upon application of the pencil-of-

functions theorem (reference [8]) to the set (5)

Note that the denominator of transform of the impulse response is given

by

A(z) - DI/ 2 (qz)-n E ( (qz-l) (9)

This follows from (9) by dividing through by zn and by normalizing the

coefficients so that the leading coefficient becomes unity.

7



The numerator parameters can be found by the method of least squares,

specifically by solving the linear equation

P b - c (10)

where b- [b b ... bn-1]T, c- (c c I ...I cV1 T , P - [Pljl] ; and

PiJ a <ui -ui> -ra)

ci  M <u, , Y> (lib)

Here ui denotes the impulse response of z /A(z). Note that u1 (k) -

u(k-i) where u(k) is the impulse response (i.e., inverse z-transform)

of i/A(z). All inner products are summed from k - 0 to K-i.

Remarks. Before leaving this section we remark that the parameters

characterizing the signal, i.e., the coefficients of the polynomials

A(z) and B(z), are recovered exactly. It is assumed of course that the

signal is of the form (1) and that the true model order is known.

The idea of reverse-.time integration was proposed by Carr in h1 and

Jain in [14. Here, we have generalized the concept of reverse-time pro-

cessing to the case of first-order filter processing. Note that the first

order filter i/(l-qz), used above, encompasses integration; just let q - 1.

IV. MODELING IN THE PRESENCE OF NOISE

In the last section we modeled an ideal signal from its samples. The

effect of additive noise is now considered. The samples available are

x(k) - y(k) + o w(k) (12)

where w(k) is a zero mean white noise process and a is an unknown positive con -

stant. As in Section II, the information signals are again generated by

processing x(k) xL(k) by the filter cascade of Fig. 1. (see Fig. 2).

8



Ow(k). x2 (k) Xn(k) XN(k)

Y* *

Fig. 2. Noisy signal through first-order filters

Note, because of the linearity of the filters, that

Xi(k) - y1 (k) + a wi(k) (13)

Then it can be seen that the expected value of the Gram matrix G of the

vector signal x(k) [ [ 1 W(k) x 2 (k) ... xN(k)]T iB3

EG -E x J x (k ) - F + 2 v (14)
k-0

where W is the covariance matrix of the unit noise vector sequence w(k) -

[w1 (k) w2 (k) ... WN(k)]T and is known before hand. To estimate 02 and F

we use the following criterion.

Jain's Identification Criterion [5]

Consistent with the noise and bias models the estimated Gram matrix

should achieve a minimum possible determinant.

Using the above criterion and equation (14), the following estimation

procedure has been developed.

Step 1. Estimate 02 as

2 1 (15)

where 0 denotes matrix inner product (i.e., Z OW - EE zij vij).

Step 2 F W (16)

Step 3. Use F in estimating A(z) and B(z) via (9) and (10).

The Justification for formulas (15) and (16) is given in Appendix B.

3The expected value operator is denoted as E
9



8 True impulse response

-y(k) I. - l.92z'l + z 2 -
1 - 2.68z-1 * 2.476z-2eO.782z 3

z
0

a

(.4

-k-

Fig. 3(a) True impulse response of a third order transfer function
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SIGNAL UNDER TEST
8 s true signal + noise

- y(k)sgcrw(k)

bc SNR =12 dB

U- 6

x (k)

0

N

20ioi do 1,00

- k -

Fig.3(b) A simulated noisy signal under test



V. A COMPUTER SIMULATION EIAMPLE

Let

1 - 1.92z 
"1 + :-

2

I - 2.68z-
1 + 2.476z

- 2 - 0.782z-
3

(1 - 0. 2z)11 -8e4z - (17)

(W - 0.28379; r - 0.96187, e - 0.30528)

be truncated at k - 99. The signal to be tested is formed as

x(k) - y(k) + a w(k) (18)

where w(k) is a zero mean, uncorrelated noise sequence. The positive scalar

o is chosen to be 0.0425 so that the signal-to-noise ratio is 12 dB. The true

signal y(k) and the noisy signal x(k) are shown in Fig. 3.

The signal under test was modeled by

1. Pencil of functions method (without applying noise correction);

reverse-time processing pole q was taken as 0.8.

2. Pencil-of-functions method with estimation of O2 and F; the value

of q was again taken to be 0.8.

43. All-pole covariance technique. Minimum error criterion, rather than

equal energy criterion was used to establish the gain parameter.

4. Pole-zero model using Prony method. Note that the denominator para-

meters (and, of course, the poles) are the same as that for the all-pole

covariance method [2]. The numerator parameters are then determined by least-

squares fit.

Fifty simulation runs, each with a different sample of noise, were per-

formed. The 'mean' and 'standard deviation (S.D.)' of the various quantities

4The all-pole autocorrelation method yields very similar results in the present

case; hence, the autocorrelation method is not included.

12
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of interest are shown in Table 1. Of course, the model order was taken to

be 3 and the number of signal samples used were 100.

The poles for the above fifty runs are listed in Appendix C, Tables Cl-C3.

A graphical portrayal of the z-domain poles for 10 runs is given in Figures

4 to 6. The location of the true poles is at the centers of the circles

shown in these figures. Judging from the normalized mean square errors in

Table 1, as well as from the scattergrams of the poles, it appears that the

pencil-of-functions method can perform reliable modeling of a rational signal

even when it is masked by noise. As is widely known, the Prony method (and

of course the covarlance method) perform quite poorly in the presence of noise.

It is sometimes claimed that the Prony method (or the all-pole-covariance

method) performs well with short data-frame. We give the poles of ten runs

with the first 10 data points of the noisy signal used in the above experiments.

These poles are given in Fig. 7. Again a wide and unreliable scatter of the

poles is produced.

VI. APPLICATION TO AN ELECTROMAGNETIC PULSE (EDf)

As a real world application we consider the use of pencil-of-functions

method to the transient response of a conducting pipe tested at the ATHAMAS-I

EMP simulator. The conducting pipe is lam long and lm in diameter. Hence,

the true resonance of the pipe is expected to be in the neighborhood of 14MHz.

Also, the pipe has been excited in such a way that it is reasonable to expect

only odd harmonics at the scattered fields. The data measured are the integral

of the E-field: i.e., the measured variable is a voltage. The transient

response used for analysis is shown in Fig. 8 by the solid line. The results

of analysis by the pencil-of-functions method are given in Table 2 for an 8th

order model; the model response, with an error of 0.0125, is shown in Fig. 8

13
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Table I

Comparison of Pencil-of-Functions Method With

All-pole covariance and Prony Methods

(Results of fifty noisy rums: SNR-12 dB)

Method
Mean + S.D. POF with All-pole Prony

noise covariance
of correction

al -2.5974 + 0.0216 -2.6753 + 0.0185 -0.5200 + 0.0747

2 2.3438 + 0.0388 2.4698 + 0.0331 -0.2334 + 0.1123

a3  -0.7288 + 0.0187 -0.7803 + 0.0160 0.0161 + 0.0710

Error (NMSE) 0.0314 + 0.0095 0.0055 + 0.0052 0.1726 + 0.0164 0.1499+0.0098

Note: From (17) the true parameters are aI - -2.68, a2 - -2.476 and a3 - -0.782

The denominator parameters for the all-pole-covariance method are the
same as those of the Prony method

14



z-plone Poles of

Circles:
centre: true Pole
radius: 0.05

-0.6

Fig. 4. poles obtained In ten (10) simulation runs by

Pencil-of-functions method.
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z-plane poles of

Circles
centre: true Dole
radius: 0.05

-0.6

Fig. 5. Poles obtained In ten (10) simulation runs by
F pencil-of-functions method with noise estimation.

16



z-plane poles of

Model V(z)

Circles
centre: true pole
rodlus: 0.05

x
.x

- ., -T ... , t. I - -  -

-0.6

x
x

Fig. 6. Poles obtained In ten (10) simulation runs by
Prony method.
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z-plone poles of

model Y(z)

x 0

Circles

center: true pole

X x radius: 0.05

xx

-0.6

x0

xx

Fig. 7. Poles obtained In ten (10) simulation 
runs by

Prony method with short frome (KI-t).

-J 18



by the dotted line. The sampling interval is A - 0.97656 ns and the number

of samples analyzed is K - 245. Note that noise estimation and correction,

as described in Section IV, has been used in the analysis.4

Table 2

Poles of a Scatterer Response Estimated by

Pencil-of-Functions Method (q-0.8)

fundamental -5.72 ± 68.63 Mrad/s (10.96 M}z)

3rd harmonic -30.65 _J 212.60 Mrad/s (33.83 MHz)

curve-fit pair -1.95 ±i 8.72 Mrad/s ( 1.42 MHz)

curve-fit pair -20.17 +j 95.58 Mrad/s (15.55 MHz)

VII. RECURSIVE DIGITAL FILTER SYNTHESIS EXAMPLE

As a final example we consider the use of pencil-of- :unctions technique

to digital filter synthesis. Suppose the desired impulse Tesponse is [12]

hd(k) - 0.25, k-0

.lSin(O.25k)/k, 1 < k < K - 256

It represents the causal part of the inverse DFT of a low-pass filter with

cutoff at 0.25 Rz. The application of the pencil-of-functions technique,

with q - 0.4, yields the following filter

0.25-0. 38841z-1+0.29346z-2-0.05783z-
3 0.42025z-

4

Ht(z) W 1 -2.46160 -1+2.78530 2-1.52226 -3+0.34805z 4

with a normalized mean-square error 0.00473. Note that the minimum value

of NMSE, as obtained in [121 by iterative methods, is 0.00346.

'The computer output listings are given in Appendix D.51
5Seventy iterations were needed to achieve the minimum value.

".19
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CONDUCTING PIPE TEST

" - Measured data

Model impulse response

Method: Pencil-of-functions
with noise estimation
and correction

eo"

0

In

CL)

C4,
gg .

C?

I?

Ed

0,

S , •
0 40 80 120 160 200 240

-k

Fig. 8. Comparison of measured data (of the response of
of a conducting pipe) and model impulse response
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VIII• CONCLUSIONS

Pole-zero modeling of signals has been considered in this paper. It

was shown that for rational signals the true parameters can be recovered

from the Gram matrix of the Information signals. The latter were formed

by reverse-time processing of the given signal by a cascade of first order

digital filters. Further, we have formulated a new approach to noise esti-

mation and correction by minimizing the determinant of the estimated Gram

matrix. The examples demonstrate the practicality of the approach, not

only because the computations are noniterative, but also because the poles

of the signal are estimated quite accurately. It is felt that the method

can be used in a broad range of applications, for example, finding the

singularities of a scatter response, modeling of speech and in spectrum

analysis.

Extension of the technique to modeling of multichannel signals with

common modes (or singularities) is possible. This work is undervay. A

second area of extension pertains to the case vhere the filters v(z) are

chosen to be high-pass. This might be useful when the signal contains an

undersirable low frequency drift component.
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APPENDIX A

PENCIL OF FUNCTIONS

A useful mathematical entity arises by combining two given functions

defined on a common interval together vith a scalar parameter

f(t,Y) - Yg(t) + h(t). (1)

We call f a pencil of functions g(t) and h(t) parametrized by y. To avoid

obvious triviality, g(t) is not permitted to be a scalar multiple of h(t).

Our work requires consideration of sets of pencils

Yg1(t) + h1 (t), Yg2 (t) + h2 (t), ...,Ygn(t) + hn(t) (2)

wherein the functions* g1 (t),....gn(t) and h1 (t),...,hn(t) span 
separately

a common n-dimensional subspace Ln in the function space. For a fixed set

of values of parameters y, the pencils obviously reduce to a set of 
functions,

and the particular values chosen determine properties such as the 
linear

dependence or independence of the set. The main result concerning the

linear dependence of pencil sets is derived in (81 and can- be stated as

follows.

Theorem: Given that the pencil set (2) is linearly dependent, the

parameters y must satisfy the polynomial equation

nC~z ~+, .. , n 1 + I ag:l,...;hk ,... ,g9n 1
nn-1

+ ... + k ""Milt ..

1

+G[h,h 2 ,...9,h ] - 0

In every sum term here, the i's and k's form a complete 
complementary set

of indices over the integers 1,2,...,n; furthermore, the notation

GtfL,...,fnI stands fpr the determinant of the n-dimensional Gram 
matrix 1111

All functions are defined on a common interval [a,b], with 
the usual inner

product denoted as b<fJg>= f(t)g*(t)dt.
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of the functions fl'... fno i.e.,

G[fl,...,f - det[gik - <fi'fk>I, i,k 1 l,...,n. (5)

Lastly, we remark that the sign of each sum term is to be determined as

Indicated in [81.

The above discussion is equally valid for discrete-time signals.

To this end the functions f(t), g,(t) and hi(t) must be replaced by the

sequences f(k), gi(k) and hi(k), and of course the inner product must be

redefined as

K-1
<fg>- E f(k)g*(k)

k-O

APPENDIX B

NOISE ESTIMATION AND CORRECTION

We observed in Section IV that

E G - F + 2V (Bl)

where G is the Gram matrix of the noisy information signals 1,. ,xn+l .

Clearly, a good estimator of F is

2
F - G -0 V (A2)

Unfortunately, this estimator is not useable because a2 is unknown. We

must estimate it using a property of the true information signals states

in Section III: The true information signals Yi,"."Y,+, are linearly

dependent and their Gram matrix is singular. Thus we require

I1I - - 2 wl - 0 (B3)

Assuming that a2 is small, and retaining only the first two terms of the

Taylor series, we have

IGI - :2 (iW)1I -0 (B4)

24



w.here the notation (GW)~ stands for the matrix obtained by replacing

the Ith column of G by the ith column of W.

A little manipulation of (34) now readily yields relation (16) of

Section IV.
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APPENDIX C

Toble Cl

Estimated Poles for Fifty (50) Runs of the Noisy Signal

of ExamIle I

PRethod Used: Pencil-of-Functions

Pole I Pole 2 Pole 3

Mal img. Ial reg. real mg.

0.8248 0.0 0.5750 0.2942 0.8780 -0. 2942
0.8407 0.0 0.8741 0.3091 0.8741 -0.30910.6323 0.0 0.e627 0.3061 0.8627 -0.3010.8530 0.0 0.5750 0.3196 0.8750 -0.31960.8359 0.0 0.8849 0.3116 0.8849 -0.3116
0.8504 0.0 0.8691 0.3192 0.8691 -0.31920.8501 0.0 0.8879 0.3150 0.8879 -0.3150
0.8231 0.0 0.8632 0.3054 0.8632 -0.3054
0.8347 0.0 0.8717 0.2871 0.8717 -0.28710.8422 0.0 0.8711 0.3132 0.8711 -0.31320.6471 0.0 0.8606 0.3137 0.8606 -0.31370.8312 0.0 0.8783 0.3091 0.8783 -0.30610.8301 0.0 0.8951 0.2904 0.8951 -0.2904
0.8428 0.0 0.8882 0.3058 0.8882 -0.3056
0.8393 0.0 0.8726 0.3062 0.8726 -0.3062
0.8414 0.0 0.8661 0.3074 0.861 -0.30740.8489 0.0 0.8840 0.3179 0.8840 -0.31790.8518 0.0 0.8826 0.3040 0.8826 -0.3040
0.8279 0.0 0.666 0.3143 0.866 -0.31430.8312 0.0 0.8885 0.2689 0.8885 -0.2889
0.8332 0.0 0.8722 0.3273 0.8722 -0.32730.8561 0.0 0.8835 0.3068 0.8835 -0.3066
0.8411 0.0 0.9907 0.3069 0.6907 -0.30690.8538 0.0 0.8691 0.3161 0."691 -0.31610.8437 0.0 0.8823 0.3099 0.8823 -0.3099
0.8288 0.0 0.8787 0.2983 0.8767 -0.29830.8370 0.0 0.8760 0.3014 0.8760--0.30140.8490 0.0 0.8764 0.3193 0.8764 -0.3193
0.8589 0.0 0.6672 0.3212 0.6672 -0.32120.8128 0.0 0.8719 0.289 0.871? -0.289
0.8368 0.0 0.8839 0.3128 0.8839 -0.3128
0.8392 0.0 0.8853 0.3134 0.8853 -0.31340.8547 0.0 0.8830 0.3170 0.8830 -0.3170
0.8448 0.0 0.8982 0.3153 0.8982 -0.3153
0.8440 0.0 0.8764 0.3181- 0.8764 -0.31810.9348 0.0 0.8834 0.3094 0.8934 -0.3094
0.8365 0.0 0.8774 0.2962 0.8774 -0.29420.8431 0.0 0.8929 0.3083 0.8929 -0.3083
0.8517 0.0 0.8659 0.3316 0.8659 -0.33160.8309 0.0 0.8686 0.3219 0.8686 -0.32190.8497 0.0 0.8852 0.3030 0.8852 -0.3030
0.8487 0.0 0.8806 0.3044 0.8806 -0.30440.7981 0.0 0.8851 0.2671 0.8851 -0.2671
0.8203 0.0 0.8794 0.3053 0.8794 -0.3053
0.8495 0.0 0.8870 0.3099 0.8870 -0.30990.8234 0.0 0.8760 0.3096 0.8760 -0.30960.8485 0.0 0.6750 0.3153 0.8750 -0.3153
0.8412 0.0 0.8956 0.2985 0.8956 -0.2965
0.8516 0.0 0.8758 0.3249 0.8758 -0.3249
0.8521 0.0 0.8850 0.3106 0.8850 -0.3104
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Estimated Poles for Fifty (50) Runs of the Noisy Signal

of Examle I

Method Used: Pencil-of-Functions With Noise Correction

Pole I Pole 2 Pole 3I
P eal lI nig. R eal Im g. Real Imam .

N 0.6287 0.0 0.9223 0.2736 0.9223 -0.2738
0.8485 0.0 0.9100 0.2944 0.9100 -0.2944
0.6421 0.0 0.8972 0.2977 0.0972 -0.2977
0.8613 0.0 0.9121 0.3043 0.9121 -0.3043
0.8405 0.0 0.9165 0.2957 0.9165 -0.2957
0.8582 0.0 0.9105 0.3002 0.9105 -0.3002
0.8554 0.0 0.9167 0.3001 0.9167 -0.3001
0.8331 0.0 0.9123 0.2906 0.9123 -0.2904
0.6423 0.0 0.9142 0.2684 0.9142 -0.266
0.8502 0.0 0.9072 0.2985 0.9072 -0.2985
0.8550 0.0 0.8944 0.2971 0.8944 -0.2971
0.8390 0.0 0.9298 0.2877 0.929 -0.2877
0.8362 0.0 0.9356 0.2713 0.9356 -0.2713
0.8485 0.0 0.9119 0.2957 0.9119 -0.2957
0.8459 0.0 0.9091 0.2890 0.9091 -0.2890
0.8470 0.0 0.9004 0.2882 0.9004 -0.2682
0.8562 0.0 0.9216 0.3014 0.9216 -0.3014
0.8575 0.0 0.9162 0.2855 0.9162 -0.2855
0.8367 0.0 0.9067 0.3014 0.9067 -0.3014
0.8353 0.0 0.9273 0.2681 0.9273 -0.2681
0.8393 0.0 0.9042 0.3152 0.9042 -0.3152
0.828 0.0 0.9180 0.2868 0.9160 -0.2868
0.8467 0.0 0.9258 0.2895 0.9258 -0.2895
0.8619 0.0 0.9042 0.2999 0.9042 -0.2999
0.8488 0.0 0.9078 0.2965 0.9078 -0.2965
0.8351 0.0 0.9145 0.2827 0.9145 -0.2827
0.8429 0.0 0.9161 0.2816 0.9161 -0.2814
0.8549 0.0 0.9092 0.3025 0.9092 -0.3025
0.8659 0.0 0.9076 0.2997 0.9076 -0.2997
0.8209 0.0 0.9134 0.2748 0.9134 -0.2748
0.8431 0.0 0.9234 0.2953 0.9234 -0.2953
0.8460 0.0 0.9299 0.2934 0.9299 -0.2934
0.8629 0.0 0.9230 0.2995 0.9230 -0.2995
0.8495 0.0 0.9236 0.3024 0.9236 -0.3024
0.8484 0.0 0.9097 0.2995 0.9097 -0.2995
0.8405 0.0 0.9146 0.2953 0.914" -0.29m3
0.8432 0.0 0.9124 0.2804 0.9124 -0.204
0.8474 0.0 0.9208 0.2929 0.9208 -0.2929
0.8589 0.0 0.8956 0.3177 0.8956 -0.3177
0.8584 0.0 0.9091 0.3029 0.9091 -0.3029
0.8550 0.0 0.9104 0.2897 0.9104 -0.2897
0.8542 0.0 0.9126 0.2870 0.9126 -0.2870
0.8046 0.0 0.9240 0.2519 0.9260 -0.2519
0.8272 0.0 0.9106 0.2946 0.9106.-0.294
0.8543 0.0 0.9198 0.2906 0.9198 -0.2904
0.8304 0.0 0.9115 0.2966 0.9115 -0.2944
0.8555 0.0 0.9124 0.2975 0.9124 -0.2975
0.8465 0.0 0.9223 0.2854 0.9223 -0.2854
0.8587 0.0 0.9082 0.3112 0.9082 -0.3112
0.8590 0.0 0.9232 0.2917 0.9232 -0.2917
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Tab I e C3

Estimated Poles for Fifty (50) Runs of the NoisY Signal
of Example 1

Method Used: Prony (or All-Pole Covarlonce)

Pole I Pole 2 Pole,

Real Imag. ai 1"g. Real in5g.

0.7664 0.0 -0.4171 0.0 0.0552 0.0
0.8104 0.0 -0.1840 0.0426 -0.1640 -0.0426
0.8087 0.0 -0.1797 0.2130 -0.1797 -0.2130
0.3244 0.0 -0.1486 0.2706 -0.1486 -0.2704
0.7762 0.0 -0.5476 0.0 0.2528 0.0
0.8182 0.0 -0.2194 0.0 -0.1087 0.0
0.7642 0.0 -0.2156 0.0 0.1252 0.0
0.7969 0.0 -0.4744 0.0 0.0461 0.0
0.7979 0.0 -0.1184 0.4021 -0.1184 -0.4021
0.7982 0.0 -0.4296 0.0 0.0885 0.0
0.7813 0.0 -0.4704 0.0 0.1590 0.0
0.8070 0.0 -0.1618 0.4163 -0.1618 -0.4163
0.7954 0.0 -0.2521 0.0 -0.0181 0.0
0.7574 0.0 -0.5090 0.0 0.4022 0.0
0.7788 0.0 -0.4379 0.0 0.1270 0.0
0.7468 0.0 -0.3464 0.0 0.1156 0.0
0.2613 0.0 0.7826 0.0 -0.6150 0.0
0.3870 0.0 0.7759 0.0 -0.6023 0.0
0.7692 0.0 -0.1222 0.3752 -0.1222 -0.3752
0.3543 0.0 -0.6700 0.0 0.770" 0.0
0.7547 0.0 -0.2677 0.0 0.0116 0.0
0.8529 0.0 -0.3008 0.0 -0.0255 0.0
0.7767 0.0 -0.2661 0.0 0.1377 0.0
0.7962 0.0 -0.3719 0.0 0.1047 0.0
0.7540 0.0 -0.3987 0.0 0.3012 0.0
0.7944 0.0 -0.2237 0.0 -0.0779 0.0
0.8068 0.0 -0.3446 0.0 -0.0091 0.0
0.7731 0.0 -0.2018 0.0 -0. 954 0.0
0.7827 0.0 -0.5571 0.0 0.2154 0.0
0.2098 0.0 0.7761 0.0 -0.6244 0.0
0.7999 0.0 -0.1537 0.3254 -0.1537 -0.3256
0.7844 0.0 -0.2558 0.0 0.0240 0.0
0.8365 0.0 -0.2889 0.0 -0.0384 0.0
0.7855 0.0 -0.3534 0.0 0.2192 0.0
0.7676 0.0 -0.1320 0.1508 -0.1320 -0.1508
0.7902 0.0 -0.4645 0.0 0.1714 0.0
0.7805 0.0 -0.4361 0.0 0.1347 0.0
0.7629 0.0 -0.3311 0.0 0.1737 0.0
0.3584 0.0 0.7315 0.0 -0.5916 0.0
0.7651 0.0 -0.4343 0.0 0.1240 0.0
0.7965 0.0 -0.3931 0.0 0.2374 0.0
0.7991 0.0 -0.3932 0.0 0.1353 0.0
0.783 0.0 -0.1486 0.2030 -0.1486 -0.2030
0.7904 0.0 -0.4655 0.0 0.1185 0.0
0.8144 0.0 -0.0909 0.2120 -0.0909 -0.2120
0.7876 0.0 -0.0753 0.3471 -0.0753 -0.3471
0.7819 0.0 -0.1089 0.0279 -0.1089 -0.0279
0.8052 0.0 -0.3982 0.0 0.1758 0.0
0.7904 0.0 -0.1299 0.2539 -0.1299 -0.2539
0.8098 0.0 -0.1021 0.3111 -0.1021 -0.3111
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